

TCD3000 Si

TCD3000 Si

The compact and robust TCD3000 SiA (Screw-in) is ideally suited for precise, fast, and sensitive measurement of (quasi-)binary gas mixtures. The measurement is based on the principle of thermal conductivity. This technology is ideal for measuring gases with significantly different thermal conductivities, such as H_2 and O_2 .

Our Advantages:

- Revolutionary precision in hydrogen concentration measurement: Discover our gas measuring devices with industry-leading **response time of 30 ms** and a measurement range from a **few ppm to 100 vol.** %
- Unrivalled robustness for demanding environments: Our devices **resist condensate and water without damage**, provide precise measurements up to a pressure of **200 bar**, and are optimized for use in humid environments ideal for electrolysers, fuel cells, and other hydrogen applications.
- Maximum safety, minimal maintenance: Increase your work safety with our fast and reliable explosion level monitoring. Our devices are a long-term investment with a lifespan of up to 10 years.
- Adaptability meets economy: Save costs and space with our versatile gas measuring devices that can measure a wide variety of gas mixtures without additional sample preparation.

TCD3000 Si SPECIFICATIONS					
Dimensions with connections; Weight	H=80 mm, D=40 mm; G1/2"; SW36; ~250g				
Power Supply	24 VDC ±25 %, 5 W				
Digital Output	RS485, Baud rate 38400 / Data 8bit				
Analog Output	4-20 mA, 3-wire connection				
Ambient temperature range	-40°C – +90°C (+125°C)				
Warm-up Time	<1 min.				
Flow Rate	0 – 10 m/s				
Gas Pressure (absolute)	0,8 – 200 Bara				
T90-Time	<1s				
Noise	< 50 ppm				
Drift at zero point	< 100 ppm per week				
Repeatability	< 50 ppm				
Error due to change of ambient temperature	< 50 ppm per 10°C				
Flow Influence	< 50 ppm per 1 m/s				
Pressure Dependency (above 800 hPa)	< 50 ppm per 10hPa				
All data refer to the measuring range 0.5 vol.% H_2 in N_2					

MOST REQUESTED MEASUREMENT COMPONENTS AND RANGES

Measuring gas	Carrier gas	Basis range	Smallest range
Hydrogen (H ₂)	Oxygen (O ₂)	0 – 100 % *	0 – 0,5 %
Oxygen (O ₂)	Hydrogen (H₂)	0 – 100 % *	0 – 1,0 %
Hydrogen (H ₂)	Nitrogen (N ₂) or air	0 – 100 %	0 – 0,5 %
Nitrogen (N ₂)	Hydrogen (H₂)	0 – 100 %	0 – 2,0 %
Hydrogen (H₂)	Argon (Ar)	0 – 100 %	0 – 0,5 %
Hydrogen (H ₂)	Helium (He)	20 – 100 %	-
Hydrogen (H ₂)	Methane (CH4)	0 – 100 %	0 – 0,5 %
Hydrogen (H ₂)	Carbon dioxide (CO ₂)	0 – 100 %	0 – 0,5 %
Helium (He)	Nitrogen (N ₂) or air	0 – 100 %	0 – 0,8 %
Helium (He)	Argon (Ar)	0 – 100 %	0 – 0,5 %
Methane (CH ₄)	Nitrogen (N ₂) or air	0 – 100 %	0 – 2,0 %
Methane (CH ₄)	Argon (Ar)	0 – 100 %	0 – 1,5 %
Oxygen (O ₂)	Nitrogen (N ₂)	0 – 100 %	0 – 15,0 %
Oxygen (O ₂)	Argon (Ar)	0 – 100 %	0 – 2,0 %
Oxygen (O ₂)	Carbon dioxide (CO ₂)	0 – 100 %	0 – 3,0 %
Nitrogen (N ₂)	Argon (Ar)	0 – 100 %	0 – 3,0 %
Carbon dioxide (CO ₂)	Nitrogen (N ₂) or air	0 – 100 %	0 – 3,0 %
Carbon dioxide (CO ₂)	Argon (Ar)	0 - 60 %	0 – 10,0 %
Argon (Ar)	Carbon dioxide (CO ₂)	40 - 100 %	_
Argon (Ar)	Oxygen (O ₂)	0 – 100 %	0 – 3,0 %

TCD technology also allows to perform the measurements of the following industrial gases: SF₆, NO₂, Neon, Krypton, Xenon, Deuterium etc.

^{*} correspondent safety measures must be taken by the client in the application with explosive gas mixtures

GENE	RAL AP	PLICATION AREAS	APPLICATION EXAMPLES		
	∞₽▲	Oil & gas, petrochemicals, chemicals	Hydrogen measurement in electrolysis	O ₂ in H ₂	Upper Explosion Limit (UEL)
		如 and synthetics	Oxygen measurement in electrolysis	H ₂ in O ₂	Lower Explosion Limit (LEL), with high moisture content
		Gas chromatographs Air separators and pure gas production	H ₂ contamination in electrolysis, fuel cells, and semiconductor industry	H ₂	99-100 vol.%, H ₂ Quality 4.0
O		Detection of gas leakages	Exhaust gas measurement in fuel cells	H₂ in Air	LEL monitoring with very high water content
O		Pharmacy	H ₂ injection into the natural gas network	H₂ in Natural Gas	0-100 vol.%, mixing control
d		Food industry	Decomposition and synthesis of ammonia	H ₂ in N ₂ + NH ₃	0-100 vol.%, process control
o	##	Metals, minerals, pulp and paper	Turbogenerators in power generation	H ₂ in Luft, H ₂ in CO ₂ (Ar), CO ₂ (Ar) in Air	Monitoring of UEL, draining and filling process
	# A	Power generation	Pure gas production and incoming goods inspection	H ₂ , He, CH ₄ , O ₂ , N ₂ , CO ₂ , Ar	Identification of the quality of produced and delivered gases
0	Environmental technology	Industrial applications	H ₂ in N ₂	0-10 vol.%, systems for the production and monitoring of forming gas	
			Safety monitoring	H₂ in Air	UEL, analysis of hydrogen dispersion in facilities and buildings

Leader in hydrogen measurement

Archigas GmbH Eisenstraße 3 D-65428 Rüsselsheim am Main

Registry Court: Darmstadt Register Nummer: HRB 106517

Tel: +49 (0)69 247544980

Info@archigas.com

www.archigas.com